Printed Pages - 3

Roll No.:

F

B022314(022)

B. Tech. (Third Semester) Examination,
Nov.-Dec. 2021

(AICTE Scheme)

(CSE Engg. Branch)

DIGITAL ELECTRONICS & LOGIC DESIGN

Time Allowed: Three hours

Maximum Marks: 100

Minimum Pass Marks: 35

Note: Part (a) is compulsory and attempt any two parts from (b), (c) and (d).

Unit-I

1. (a) Convert 10101001 in Gray code.

4

[2]

	(b) State and prove Demorgan's law.	8
	(c) Describe NAND and NOR gate as universal gate.	8
	(d) For 7 bit hamming code received code is 1111101 find error use even parity.	8
	Unit-II	
2.	(a) Define Fan in and Fan out.	4
	(b) Describe CMOS NAND gate.	8
	(c) Describe CMOS NOR gate.	8
	(d) Describe TTL open collector circuit.	8
	Unit-III	
3.	(a) Define the term Combinational Circuit.	4
	(b) Describe full adder circuit with diagram and truth table.	8
	(c) Design 4×16 decoder using 3×8 decoder.	8
	(d) Implement the Boolean expression $F(A, B, C) = \Sigma m(0, 2, 5, 6)$	
	using 4: 1 multiplexer.	8

[3]

Unit-IV

4.	(a) Define sequential circuits.	4
	(b) Describe S-R flip-flop with diagram.	8
	(c) What is race around condition and also describe master slave flip-flop?	8
	(d) Describe how to convert D flip flop into T flip-flop	. 8
	Unit-V	
5.	(a) Define state diagram.	4
	(b) Describe Mealy State Machine.	8
	(c) Describe Moore State Machine.	8
	(d)Describe basic components of ASM charts.	8